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Conditions for insensitivity of the microscopic-scale dielectric response to structural details
of dipolar liquids
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Details of condensed matter structure can alter microscopic-scale response to electric fields by orders of
magnitude. It is shown that dipolar liquids near boundaries is an exception where the response can be virtually
insensitive to such details and can sense mainly the macroscopic dielectric permittivity. This insensitivity is
due to fluidity, symmetry properties, and location of the fields’ charges outside the liquid or inside impermeable
solute cavities, which is the ubiquitous location in molecular scale phenomena.
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Electric fields are nonuniform at the molecular scale in
many phenomena involving electrostatic interactions with
and through dipolar liquids. Such interactions are determined
by spatial correlations of the molecular charges and dipoles
of the liquid. Patterns of the correlated charges have been
demonstrated in most infinite and confined dipolar liquids by
analytic theories [1-6], molecular simulations [7-9], and
neutron scattering [9,10]. Due to spatial resonance of non-
uniform fields with the patterns of infinite liquids, the inter-
action free energies can exceed the predictions of macro-
scopic electrostatics by 1-2 orders of magnitude[11-13].

In practice, measured interaction free energies agree to
within a factor rarely exceeding two with the macroscopic
dielectric continuum model assuming the absence of the mi-
croscopic structure. This model became one of the most
widely used in physics, chemistry, and biology [14]. Its suc-
cess is difficult to explain by compensation of errors, by
uncertainties in liquid structure and in molecular-scale elec-
tric fields, or by “chemistry” of molecular systems, because
the microscopic structure, the amplitudes and the character-
istic lengths of the resonating patterns are very different for
different liquids [12,13,15]. This paradox between the incor-
rect assumption of the macroscopic electrostatics and the
quality of its prediction indicates the poorly understood
physics of interactions between electrostatic fields and dipo-
lar liquids.

This Brief Report explains the paradox by different
mechanisms of interaction between the microscopic structure
of dipolar liquids and electric fields with two different to-
pologies distinguished by the presence of the boundary.
Namely, fields produced by charges located outside the lig-
uid are not directly coupled to the structural patterns due to
fluidity and symmetry properties of the dipolar correlations.
The coupling occurs via the perturbation that the boundary
imposes on the short-range energy cost of polarization. This
perturbation and the related deviation of the interaction free
energy and polarization from their macroscopic predictions
can be small, because the short-range energy remains small
compared to the total energy cost of polarization down to
short characteristic lengths. Fields produced by inside
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charges are directly coupled and, thus, very sensitive to the
structural patterns.

A rigorous relationship between liquid structure and elec-
trostatics follows from the linear response theory [4,16,17].
The microscopic polarization P(r) induced in the dipolar
liquid by the applied “vacuum” electric field E(r) is deter-
mined by the susceptibility tensor vy,4(r,r’), 4mwP,(r)
=2 Yap(r.r")E4(r")dr'. The tensor vy is associated in the
classical limit with the spatial correlator of liquid molecules
approximated here by point dipoles,

Yap(t1') = 27T (8 1) 3p 5(r"))o, (1)

where T is temperature in energy units; «, 8=x,y,z are in-
dexes of the Cartesian coordinates, (- --), denotes statistical
averaging in the absence of the applied field, £=0, dp(r)
=p(r)—(p(r))y, and p(r)=2,u;8(r—r,) is the instantaneous
polarization of the liquid; u; is the permanent dipole moment
situated at the center of molecule i.

In the presence of boundaries, the forms of the dipolar
correlations (1) are poorly explored. These forms are re-
stricted by fluidity and by symmetry properties. The restric-
tions can be accounted for via relationships between the in-
duced polarization P and the system’s energetics following
from the linear response theory. Namely, the microscopic
polarization induced in a stable, ergodic system by a weak
field £ minimizes the polarization free energy functional F
[4-6,17,18],

F=2, | —Pur)Er)+ 277:[ P (r) Y, 5(r,x")Pg(r’)dr’ dr
apdv v

=—EP+27Py P, (2)

F is the sum of the electrostatic interaction energy with the
applied field € and of the “self’-energy of nonequilibrium
polarization P created by another weak field. The self-energy
is related to the dipolar correlator (1) via the inverse suscep-
tibility tensor ' by the system of integral equations,
y 'y=1, where I=6,38(r-r’'); 5,5 and &(r—r’) are the Kro-
necker symbol and Dirac delta function. Hereafter, the prod-
uct of bold symbols denotes the convolution over repeating
indexes and integration over domain V accessible to the lig-
uid molecules.
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Due to fluidity, the molecules sample every point in the
accessible domain in response to static, weak and, therefore,
piecewise continuous electric fields. Consequently, all in-
duced polarizations and polarizations appearing in the func-
tional (2) are continuous even at subatomic distances. I will
show elsewhere that electric fields of such polarizations av-
eraged over infinitesimal volume elements and then statisti-
cally averaged are continuous also. Then, the electrostatic
relationships for structured continuous dielectrics follow
from linear response theory. In particular, the free energy (2)
of continuous microscopic polarizations can be separated
into long-range F; and short-range Fg components [4,6,19],

F=-EP—-1PTP+27Px 'P. 3)
| I F.
Fy s

The long-range polarization energy F; is the electrostatic
energy of electric field EP=TP produced by continuous po-
larization P, where T(r—r’) stands for the electric field pro-
duced by a uniformly polarized cubic volume dr’ centered at
', Top(r)=3r,rgr>=8,5r> at r>0 [19-21]. The effective
short-range energy Fs of the fluctuating polarization is deter-
mined by the inverse polarizability tensor x~! relating the
total electric field E=EP+& and the induced polarization,
E=47k"'P. Related to the dipolar correlator ¥, tensor &'
=v'4+(47)7'T contains pertinent information about liquid
structure and its perturbation by the boundary.

The fluctuating liquid structure is perturbed by the bound-
ary in two ways. First, there is the lack of electrostatic inter-
actions between the accessible and excluded domains. It is
accounted for via integration over the accessible domain V of
the long-range polarization energy F; (3). Second, there may
be a perturbation of the short-range polarization energy. To
track this effect I write the short-range polarization energy Fy
as the sum of the energy that the polarization would have had
in the bulk and its perturbation by the boundary. The inverse
polarizability tensor is split thereby onto the bulk K;l and
boundary K,jl components,

K=+ i) (4)

As these tensors determine energy, their forms are re-

stricted by symmetries of the system. To account for isotro-

pic properties of liquid bulk, I write the bulk short-range
energy in terms of spatial derivatives of the polarization,

ijP:f (e - D7PP+ D, aH(V - )'P|> +a!|(V X )P|dr.
|4

i=1
&)

The expansion coefficients all-"T and the dielectric permit-
tivity & are related to the Fourier components y~7(k)=[ 8T
+(e-1)"! +Z?°:1af"Tk2i]" of the dipolar correlator (1) in the
infinite liquid and incorporate, respectively, microscopic and
macroscopic characteristics of bulk liquid structure (&*=1,
6"=0). The derivatives take the forms of divergences/
gradients (V-)" and curls (V X ) which are the only invariant
differential operators with isotropic symmetry. They account
for longitudinal and transversal polarizations that can emerge
due to their entanglement near the boundary. Analogous ex-
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pansions are used in the elastic and liquid crystal theories
[22], but are limited to first order derivatives and weakly
nonuniform displacements. This limitation can be lifted for
continuous polarizations because the inverse polarizability
tensor ! is believed to be short-range in dipolar liquids far
from the critical point [20].

For electric fields produced by charges located outside the
dielectric, p(r € V)=0, minimization [23] of the functional F
(3)—(5) results in relationship

P=P,- 9Py, 5=y, (6)

between the induced P and the macroscopic P,, polariza-
tions. The latter is determined by equation 4m(s—1)"'Py,
=E+TPy,=E equivalent to the Poisson equation V-E
=e7'V-£[19,24].

The deviation from the macroscopic polarization will be
small if the parameter 2 is small. This is the case even if the
fluctuating liquid structure and the dipolar correlator y have
features at the characteristic length of the applied field and
exhibit the boundary perturbation due to the lack of electro-
static interactions between the accessible and excluded do-
mains.

The physical meaning of this parameter can be clarified
by comparing the response energy W= %SP related here to
the equilibrium free energy (3), W=—F, with its macroscopic
prediction Wy,= %SPM. The deviation AW,=W—-W,, from the
prediction,

AW, == 27Py i, (1 - )P, (7)

is small, |[AW,| < W,, if the boundary perturbation of
the short-range energy of the macroscopic polarization
P,, is small compared to the total energy of P,
Py, Py | <Py 'Py.

Let us illustrate this result using a simple model of a Born
ion, a spherical layer of charge density e(477r123)‘16(r—r3), in
the spherical cavity of radius R=rp. In the limit of weak
nonuniformity of the ion’s field we can omit the second and
higher order derivatives in Eq. (5) and find the induced po-
larization P=P(r)r/r,

b(r+X\)

_ (r=R)/I\ . 8
MRe/(e — 1)+ bR+N)© ®

P(r)=Pyl| 1

I assumed for simplicity that the characteristic lengths of the
short-range boundary component Kgl are shorter than the
correlation length N=+/ak(1-g~") in this model, ;' —b&(r
—R)IL. If b is small, the polarization coincides with the mac-
roscopic prediction 47Py=e(1-&!)r2, even though the
correlation length N\ is comparable with the cavity radius: see
Fig. 1.

If the applied charges are located inside the dielectric,
p(r e V) #0, the polarization may not approach the macro-
scopic polarization when the characteristic lengths of the ap-
plied field and of the dielectric are comparable; see Fig. 1.
For the Born ion embedded in an infinite dielectric modeled
above these lengths are \ and the cavity radius rz [6(r>0)
=1, 6(r=0)=0],
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FIG. 1. Polarizations induced by a spherical charged layer em-
bedded in the bulk and in the spherical cavity of the structured
dielectric (8). e=1, A\=1, R=1, £=40, and b=0,0.5.
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The deviation of the induced polarization (6) from the mac-
roscopic prediction P, is now determined by the nonlocal
part of ,! and its details of liquid structure,

7=y - (- 1)7'D.

These results can be interpreted in terms of a balance
between electrostatic and effective short-range interactions.
The electrostatic interactions tend to align molecular dipoles
to maximize screening of the applied field. Such polarization
cannot follow the rapid spatial variation of the applied field
because the “nonuniformity” of polarization has finite energy
cost associated with short-range spatial correlations of the
dipoles. The surface charge of the macroscopic polarization
P,, can efficiently screen the field of outside charges. Yet the
nonuniformity cost of this polarization is zero in the absence
of the boundary perturbation of this cost. Indeed, by symme-
try, the bulk short-range cost may depend only on divergence
V-P and curl VXP (5) in isotropic materials with the vector
order parameter P, whereas the macroscopic polarization
by the outside charges is divergence- and curl-free (V-P),
=|V X P,,|=0). A divergence or curl of the polarization and,
hence, “nonmacroscopic” polarization modes with V-P#0
or [VXP|#0 will not emerge because their nonuniformity
cost increases the total energy without enhancing the screen-
ing (the bulk polarization charge —V-P is farther from the
outside charges than the surface polarization charge). This
means that the “nonmacroscopic” normal modes of polariza-
tion do not interact with the outside charges and do not pro-
duce an electric field outside the material with nonspecific
boundary (with ' =0).

However, the nonmacroscopic modes can produce an
electric field inside the material and can interact and respond
to inside charges. The macroscopic polarization may not op-
timally screen the inside charges due to the substantial bulk
cost of nonuniformity (V-P,,#0). Therefore, the micro-
scopic and macroscopic polarizations by the inside charges
will differ.
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Molecular simulations of a model dipolar fluid and water
indicate modest deviations from the macroscopic polariza-
tion by outside charges, unless the molecules and the bound-
ary are idealized by spheres and smooth extended surfaces
[25]. Such idealizations may incur large deviations due to
highly regular packing of several molecular layers near the
boundary that are rarely observed in reality. Relevant ex-
amples are few because most simulations focus on structural
features other than the induced polarization, inverse polariz-
ability «~! or susceptibility ¥ tensors. The presence of struc-
ture and its perturbation by the boundary do not necessarily
cause deviations from the macroscopic predictions.

Dipolar correlations in bulk liquids may indicate systems
with boundaries where small deviations can be expected at
rather short characteristic lengths of the fields of outside
charges. For example, in simulated bulk water the short-
range energy of polarization remains the smaller fraction of
the total energy at 7/k=3 A lengths. This fraction is of
the order of [|y*(k)™'=1|+y (k)" 1/[¥ (k)" +9 (k) 1]~1
—y(k)t, where the Fourier components of the dipolar
correlator (1) are in the ranges of 0.013>1-+*(k)>-0.5
and 0.013<97(k)~'<0.07 [26]. Therefore, the ratio of the
boundary perturbation of the short-range energy to the total
energy and the deviation AW, (7), can be relatively small,
|AW, |/ Wy, ~|1-y(k)*| <0.5, unless other deviations are
strong.

Hydrogen bonds and other strong interactions with the
boundary that affect rotational and translational mobility of
the molecules can substantially perturb the short-range en-
ergy cost of polarization. If the net interaction energy per
molecule in a boundary layer with thickness similar to the
applied field length exceeds the thermal energy, significant
deviations from the macroscopic response can be expected.

Fields of outside charges may have minor components at
shorter characteristic lengths where the resonant peaks in the
dipolar correlators and the short-range energy of polarization
become large [in simulated water y(k)-~10? at w/k~1 A
[26]]. The contribution of such components to the response
energy W should be small, ~y(k) e=2¥¢~ 107, because their
field decays exponentially with the distance { between the
charge and the boundary and {=3 A in typical molecular
systems.

Deviations caused by the nondipolar components of the
liquid intramolecular charge density and by the gradual onset
of the liquid density and polarization at the boundary were
neglected above and should also be small. Using the macro-
scopic polarization as the zeroth approximation, one can ex-
pand the induced polarization and the response energy in
terms of such deviations. These deviations are independent
to the first approximation, W= Wy +AW,+AWq,+AWg,.
AWgp/ Wy 12/ & and AWy / Wy, w/ € scale with the charac-
teristic size / of the liquid intramolecular charge density, the
characteristic length & of the solute’s electric field, and the
half-width of the onset layer w. These relative deviations
should not exceed 0.05-0.2 for typical ionic and dipolar sol-
utes in water [27].

Response to fields produced by inside charges is very sen-
sitive to inter- and intra-molecular liquid structure because
the charges are permeated by liquid molecules [12,13,26,28].
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Due to large compensations of multipolar contributions, the
response energy strongly depends on approximations of the
intramolecular charge [26]. If continuous rather than point
approximations of the electron density are used, the devia-
tions from the macroscopic prediction become large already
at characteristic lengths of m/k=14 A, AW/W,,~[e!
—e(k)™"]/(1-"1)=1-75, where &(k) is the permittivity ob-
tained from a continuous charge correlations in simulated
water [28]. This and similar conditions are not necessary for
the fields of outside charges, but were used to claim that
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quasimacroscopic response is impossible at the molecular
scale.

Interacting charges are usually located outside dipolar lig-
uids with boundaries or inside impermeable cavities formed
by solute molecules carrying the charges. Weak, indirect cou-
pling of such charges to the microscopic details of liquid
structure can explain surprisingly low sensitivity of many
molecular-scale phenomena to the details. Such coupling can
also provide means of modeling and physical rationale for
the residual sensitivity to the microscopic liquid structure.
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